Optimization of fractionated radiotherapy via mathematical modeling

Maxim Kuznetsov,

Andrey Kolobov

P. N. Lebedev Physical Institute of the Russian Academy of Sciences

International Youth School Innovative Nuclear Physics Methods of High-Tech Medicine 16-17 December 2021

Basic approaches to modeling tumor growth

Mathematical modeling in oncology: history, goals, difficulties

Fractionated radiotherapy

Fraction of cells, which survive after a single radiation dose *D*: $S(D) = e^{-\alpha D - \beta D^2}$

<u>4 R's</u>:

- **R**eoxygenation
- **R**edistribution of cell cycle
- **R**epopulation
 - **R**epair

of sublethal damage

Type of model	pros		cons
ODEs	 simple analytical optimization me 	thods	 analytical methods become unsolvable under complex non-linear terms and/or discontinuous treatments cannot account for non-uniform cell radiosensitivity in space
Gy 5		Sketo	ch of a simplest optimization algorithm:
4		1. Ir	ncrease a random fractional dose
2		2. D n	ecrease another random dose, naintaining overall tissue damage
1	•	3. If	(profit), then repeat 1-3.
0	10 20 30 40 day		

 Leder K. et al. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules //Cell. – 2014. – T. 156. – №. 3. – C. 603-616.

Prokopiou S. et al. //Radiation Oncology. – 2015. – T. 10. – №. 1. – С. 1-8.

• Henares-Molina A. et al. //PLoS One. – 2017. – T. 12. – №. 6. – C. e0178552.

Type of model	pros	cons
ODEs	 simple analytical optimization methods 	 analytical methods become unsolvable under complex non-linear terms and/or discontinuous treatments cannot account for non-uniform cell radiosensitivity in space
PDEs	 can account for non-uniform 	 need to develop optimization methods
Agent- based	cell radiosensitivity in space	 numerical complexity does not allow to utilize optimization procedures small number of cells is considered

The model: variables

The model: dynamics of cells and necrotic tissue

The model: dynamics of cells and necrotic tissue

The model: dynamics of cells and necrotic tissue

The model: dynamics of nutrients

The model: dynamics of nutrients

n(x,t) - tumor cells
m(x,t) - necrotic
tissue
h(x,t) - normal
tissue
G(x,t) - glucose
O₂(x,t) - oxygen

The model: radiotherapy

$$\begin{split} n|_{postRT} &= n|_{preRT} \cdot exp(\{-\alpha \left[OER_{\alpha}(\omega) \cdot \gamma(g) \cdot D\right] - \beta \left[OER_{\beta}(\omega) \cdot \gamma(g) \cdot D\right]^{2}\}), \\ m|_{postRT} &= m|_{preRT} + [n|_{preRT} - n|_{postRT}]; \end{split}$$

where
$$OER_i(\omega) = \frac{\omega * OER_{i,m} + K_m}{\omega + K_m}$$
, $i = \alpha, \beta; \ \gamma(g) = \frac{g + kg^*}{g + g^*}$.

Optimization task

First irradiation was performed when **tumor radius reached 1 cm**. Considered schemes consisted of **42 non-negative doses**, administered successively **at 24 h interval**.

Standard scheme: 30 doses of 2 Gy, delivered every weekday over six weeks:

$$\mathbf{D^{st}} = (D_i^{st}), \ D_i^{st} = \begin{cases} 0 \ if \ i = 6 + 7[k-1] \ \lor \ i = 7k, \ k \in \mathbb{N}; \\ 2 \ otherwise; \end{cases} \quad i \in [1, 42]$$

Two constraints on normal tissue damage:

$$NTD_h(\mathbf{D}) \equiv \sum_{i=1}^{42} [(\alpha/\beta)_h \cdot D_i + D_i^2] \le NTD_{max} \equiv NTD_h(\mathbf{D^{st}});$$
$$D_i < D_{max} \ \forall i.$$

Aim: find the scheme to decrease the number of tumor cells as much as possible

$$F(\mathbf{D}) = \min_{t} (lgN(\mathbf{D},t)), \text{ where } N(\mathbf{D},t) \equiv \hat{n}\hat{r}^3 \cdot 4\pi \int_0^X n(\mathbf{D},r,t)r^2 dr$$

At that, the Tumor Cure Probability increases:

 $TCP(\mathbf{D}) = e^{-\min_{t}(N(\mathbf{D},t))}$

Model parameters

HM – high malignant tumor, *IM* – intermediate malignant tumor, *LM* – low malignant tumor.

Parameter	Description	Model Value	Malignant tumor cells:
В	tumor cells' proliferation rate	<i>HM:</i> 0.01	
	-	IM: 0.005	divide faster
		LM: 0.0025	
e	ratio of death rates of tumor and normal cells	<i>HM</i> : 0.3	
	due to the lack of oxygen	IM: 0.7	die narder
		<i>LM:</i> 1	
D_n	tumor cells' motility	<i>HM</i> : 0.01	
		<i>IM</i> : 0.001	move faster
		<i>LM</i> : 0	
P_g	glucose inflow parameter	<i>HM</i> : 20	_
		<i>IM</i> : 10	
		<i>LM:</i> 4	• induce angiogenesis
P_{ω}	oxygen inflow parameter	<i>HM</i> : 50.8	
		<i>IM:</i> 35.8	
		<i>LM</i> : 25.4	
Q_n^g	tumor cells' glucose consumption rate	<i>HM</i> : 12	
		<i>IM:</i> 6	
		<i>LM</i> : 3	• consumo moro nutrionto
Q_n^{ω}	tumor cells' oxygen consumption rate	HM: 63	 Consume more numerus
		IM: 31.5	
		<i>LM</i> : 15.75	
k	ratio of radiosensitivity of quiescent	<i>HM:</i> 1	• become more radiosensitive
	and proliferating tumor cells	<i>IM</i> : 0.5	become more radioselisitive
		<i>LM</i> : 0.2	in quiescent state (optional)

Gy

5ŀ

4 3 2

Optimization of spatial distribution of irradiation – what happens now

Imaging-based dose painting – first suggested in 2000 (Ling et al. 2000)

What can be accounted for:

- hypoxia profile
- cell proliferation profile
- cell density profile
- stem cells positioning

heterogeneity in time & lack of resolution

<u>Results:</u>

- hypoxia dose painting is feasible (Lee et al. 2008, Servagi-Vernat et al. 2015) but does not improve tumor response (Vera et al. 2017)
- FDG-PET dose painting is feasible but only phase I trial has been conducted (Madani et al. 2011)
- No clinical dose painting studies for DW-MRI Basic
- Joiner M. C., van der Kogel A. J. (ed.) Basic clinical radiobiology, 2018.

Optimization of spatial distribution of irradiation – what works exist

Task formulation

Spatial optimization of one irradiation

Spatial optimization of 5 irradiations

Spatial optimization of each of 30 irradiations

Spatial optimization based on cell distribution

Spatial optimization based on cell distribution

Spatial optimization based on cell distribution

Discussion

Conclusions:

- non-uniform radiotherapy fractionation schemes may be more effective that uniform ones, due to the time and space-dependent effects;
- spatial distribution of irradiation can be optimized yielding increased tumor cure probability under preserved tissue damage level;
- dose painting based on necrosis level may by itself be efficient for tumors with well pronounced necrotic cores.

Further work:

- account for non-instant cell death and fluid outflow;
- spatio-temporal optimization.

Thank you for your attention!

- Kuznetsov M., Clairambault J., Volpert V. Improving cancer treatments via dynamical biophysical models //Physics of Life Reviews. – 2021.
- Kuznetsov M., Kolobov A. Optimization of dose fractionation for radiotherapy of a solid tumor with account of oxygen effect and proliferative heterogeneity //Mathematics. – 2020. – T. 8. – №. 8. – С. 1204.