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Mathematical modeling in oncology:
history, goals, difficulties

Model
detailness

• impossible to estimate 
all parameter values, 
enormous computational complexity

• amenable to analysis
and gives an idea of the basic principles

• impossible to reproduce 
the key features of the object
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Key practical goal: 
optimization of 

anticancer therapy

Key problem: 
choice of the level 

of detailness
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Fraction of cells, which survive after a single radiation dose D:

4 R’s:

• Reoxygenation

• Redistribution
of cell cycle

• Repopulation 

• Repair 
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normal

surviving cells

Fractionated radiotherapy



Mathematical modeling for optimization
of radiotherapy fractionation

ODEs
• simple
• analytical optimization methods

• analytical methods become unsolvable 
under complex non-linear terms
and/or discontinuous treatments

• cannot account for non-uniform
cell radiosensitivity in space

Type 
of model

pros cons

Sketch of a simplest optimization algorithm:

1. Increase a random fractional dose

2. Decrease another random dose, 
maintaining overall tissue damage

3. If (profit), then repeat 1-3.



Mathematical modeling for optimization
of radiotherapy fractionation

ODEs
• simple
• analytical optimization methods

Type 
of model

pros cons

• Leder K. et al. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules 
//Cell. – 2014. – Т. 156. – №. 3. – С. 603-616.
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• analytical methods become unsolvable 
under complex non-linear terms
and/or discontinuous treatments

• cannot account for non-uniform
cell radiosensitivity in space



Mathematical modeling for optimization
of radiotherapy fractionation

• Prokopiou S. et al. //Radiation Oncology. – 2015. – Т. 10. – №. 1. – С. 1-8.

• Henares-Molina A. et al. //PLoS One. – 2017. – Т. 12. – №. 6. – С. e0178552.



Mathematical modeling for optimization
of radiotherapy fractionation

ODEs

PDEs

Agent-
based

• simple
• analytical optimization methods

• can account for non-uniform
cell radiosensitivity in space

• need to develop optimization methods

• numerical complexity does not allow
to utilize optimization procedures

• small number of cells is considered

Type 
of model

pros cons

• analytical methods become unsolvable 
under complex non-linear terms
and/or discontinuous treatments

• cannot account for non-uniform
cell radiosensitivity in space



The model: variables

n(x,t)– tumor cells

m(x,t) – necrotic 
tissue

h(x,t) – normal 
tissue

G(x,t) – glucose

O2(x,t) – oxygen
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The model: dynamics of cells and necrotic tissue 
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The model: dynamics of cells and necrotic tissue 

n(x,t)– tumor cells

m(x,t) – necrotic 
tissue

h(x,t) – normal 
tissue

G(x,t) – glucose

O2(x,t) – oxygen
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Baek, NamHuk, et al. 
Drug design, development 
and therapy 10 (2016): 2155.
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The model: dynamics of nutrients

n(x,t)– tumor cells
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The model: dynamics of nutrients

n(x,t)– tumor cells
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The model: radiotherapy

n(x,t)– tumor cells

m(x,t) – necrotic 
tissue

h(x,t) – normal 
tissue

G(x,t) – glucose

O2(x,t) – oxygen
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The model: radiotherapySimulation of tumor growth and radiotherapy
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The model: radiotherapySimulation of tumor growth and radiotherapy
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The model: radiotherapySimulation of tumor growth and radiotherapy
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The model: radiotherapySimulation of tumor growth and radiotherapy
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The model: radiotherapySimulation of tumor growth and radiotherapy
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Optimization task

First irradiation was performed when tumor radius reached 1 cm.
Considered schemes consisted of 42 non-negative doses, 

administered successively at 24 h interval.

Standard scheme: 30 doses of 2 Gy, delivered every weekday over six weeks:

Two constraints on normal tissue damage:

Aim: find the scheme to decrease the number of tumor cells as much as possible

1
At that, the Tumor Cure Probability increases:



Optimization algorithm
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Model parameters

Malignant tumor cells:

• divide faster

• die harder

• move faster

• induce angiogenesis

• consume more nutrients

• become more radiosensitive
in quiescent state (optional)



Standard vs. optimized fractionation schemes

standard

optimized

∆α ≈ 0.008



Standard vs. optimized fractionation schemes

standard

optimized

∆α ≈ 0.014



Standard vs. optimized fractionation schemes

standard
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∆α ≈ 0.028



Standard vs. optimized fractionation schemes

standard

optimized

∆α ≈ 0.028



Optimization of spatial distribution 
of irradiation – what happens now

How it can be accounted for:

• PET imaging

• FDG-PET, FLT-PET 

• DW-MRI

Imaging-based dose painting – first suggested in 2000 (Ling et al. 2000)

Results:

• hypoxia dose painting is feasible (Lee et al. 2008, Servagi-Vernat et al. 2015)

but does not improve tumor response (Vera et al. 2017)

• FDG-PET dose painting is feasible but only 
phase I trial has been conducted (Madani et al. 2011)

• No clinical dose painting studies for DW-MRI Joiner M. C., van der Kogel A. J. (ed.) 
Basic clinical radiobiology, 2018.

dose painting 
by volume 

dose painting 
by number 

Main problems:

heterogeneity in time & lack of resolution

What can be accounted for:

• hypoxia profile

• cell proliferation profile

• cell density profile 

• stem cells positioning



Optimization of spatial distribution 
of irradiation – what works exist

López Alfonso J. C. et al. //PloS one. – 2014. – Т. 9. – №. 2. – С. e89380.

desired probability 
of tumor eradication

tumor 
volume

Brahme A., Argren A. K. //Acta Oncologica. – 1987. – Т. 26. – №. 5. – С. 377-385.

radioresistance
(1/α)

(not to scale)



Task formulation

Find spatial distribution of irradiation,
yielding maximum cell kill
under given dose integral 
over tumor volume

One “beam”



Spatial optimization of one irradiation



Spatial optimization 
of 5 irradiations



Spatial optimization 
of each of 30 irradiations

# of spatially-optimized fractions



Spatial optimization 
based on cell distribution

𝐷 𝑟 = k ∗ (1 −
4𝑚2

4 +𝑚2
)

normalization
parameter

fraction of necrosis 
(1-n), where n – cells
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Spatial optimization 
based on cell distribution

uniform
dose distribution

dose distribution
based on cells

Δα=0.013

tumor cell radiosensitivity
α=10*β

Tumor 
Control 
Probability



Discussion
Conclusions:

• non-uniform radiotherapy fractionation schemes may be more 
effective that uniform ones, 
due to the time and space-dependent effects;

• spatial distribution of irradiation can be optimized 
yielding increased tumor cure probability 
under preserved tissue damage level;

• dose painting based on necrosis level
may by itself be efficient 
for tumors with well pronounced necrotic cores.

Further work:

• account for non-instant cell death and fluid outflow;
• spatio-temporal optimization.
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attention!

• Kuznetsov M., Clairambault J., Volpert V. Improving cancer treatments 
via dynamical biophysical models //Physics of Life Reviews. – 2021.

• Kuznetsov M., Kolobov A. Optimization of dose fractionation for radiotherapy 
of a solid tumor with account of oxygen effect and proliferative heterogeneity 

//Mathematics. – 2020. – Т. 8. – №. 8. – С. 1204.


